

Fig. 2. Ratio of observed asymptotic $(T_1 = T_\lambda)$ power input to that calculated on the basis of several theories as a function of T_0 ; $d = 3.36 \,\mu$. Curve a—m = 3, $\mathbf{v}_c = 0$, A as given by Vinen (4); curve b—m = 3, \mathbf{v}_c as given by Dash (16), A as given by Vinen; curve c—m = 3, $\mathbf{v}_c = 0$, A = 50 cm-sec/gm; curve d—m = 4, $\mathbf{v}_c = 0$, A = 50 cm-sec/gm.

to determine a few selected values of A in the region $1.7^{\circ}-2.0^{\circ}K$ for large \bar{q} where neither of these objections applies. We have not been able to solve the nonlinear integral equation (26) directly for \bar{q} , but instead we have used a variance method pointed out to use by Dr. R. B. Lazarus.

We consider

$$\bar{\mathbf{q}}(\lambda, T) = \frac{d^2}{L} \int_{T_0}^T \frac{\Lambda}{1 + \lambda \delta} d\tau \tag{44}$$

where $\delta \equiv \alpha d^2 \bar{\mathbf{q}}^2$, $\lambda \equiv \alpha'/\alpha$ is a factor relating α (determined from Vinen's A(T)) and α' (the new value of α to be determined from the present experiments); τ is a dummy variable. Holding $\bar{\mathbf{q}}$ fixed and varying λ we obtain

$$0 = \frac{d^2}{L} \left[\frac{\Lambda}{1 + \lambda \delta} \left(\frac{\partial T}{\partial \lambda} \right)_{\bar{\mathbf{q}}} - \int_{\tau_0}^{\tau} \frac{\Lambda \delta}{(1 + \lambda \delta)^2} d\tau \right]; \tag{45}$$

and holding λ fixed and varying \bar{q}

$$\left(\frac{\partial \bar{\mathbf{q}}}{\partial T}\right)_{\lambda} = \frac{d^2}{L} \left[\frac{\Lambda}{1 + \lambda \delta} - \int_{\tau_0}^{T} \frac{2\lambda \Lambda \delta}{\bar{\mathbf{q}}(1 + \lambda \delta)^2} d\tau \left(\frac{\partial \bar{\mathbf{q}}}{\partial T}\right)_{\lambda} \right]. \tag{46}$$

Combining (45) and (46) we find

$$\left(\frac{\partial T}{\partial \lambda}\right)_{\bar{\mathbf{q}}} = \frac{\bar{\mathbf{q}}}{2\lambda} \left[\left(\frac{\partial T}{\partial \bar{\mathbf{q}}}\right)_{\lambda} - \frac{(1+\lambda\delta)L}{\Lambda d^2} \right] \tag{47}$$